任课老师: xxx.
题目
设 $A$ 为定义在 Banach 空间 $X$ 上的线性算子, $B$ 是定义在 $X$ 的共轭空间 $X^*$ 上的线性算子, 如果
证明: $A \in \mathscr{L}(X)$, $B \in \mathscr{L}(X^*)$ 且 $B = A^*$.
从而 $\forall f\in X^*, f\circ A$ 是 $X$ 上的有界线性泛函. 考虑到第二共轭空间的自然嵌入 $J_x:X\to X^{**}$, 有 $\Vert J_x \Vert=\Vert x \Vert$. 任取有界列 $\lbrace x_n\rbrace $, 为了证明 $A$ 有界, 只需证明 $\lbrace Ax_n\rbrace $ 有界. 那么对 $\lbrace J_{Ax_n}\rbrace $ $\forall f\in X^*$, $J_{Ax_n}(f)=f(Ax_n)=f\circ A (x_n)$. 由 $f\circ A$ 是有界线性泛函, 所以 $\lbrace J_{Ax_n}(f)\rbrace $ 是有界的, 那么 $\lbrace J_{Ax_n}\rbrace $ 点点有界, 由一致有界原理知存在 $M>0$, $\norm{J_{Ax_n}}<M\quad \forall n$. 从而 $\Vert Ax_n \Vert=\norm{J_{Ax_n}}<M$ 故 $\lbrace Ax_n\rbrace $ 有界, 所以 $A$ 是有界线性算子. 此时考虑 $A^*:X^*\to X^*$, $A^*(f)=f\circ A$. 故 $\forall f\in X^*, x\in X$, $A^*(f)(x)=f(Ax)=(Bf)(x)$. 从而 $A^*f=Bf,\quad \forall f$, 则有 $A^*=B$. 再根据伴随算子性质 $\Vert B \Vert=\Vert A^* \Vert=\Vert A \Vert$, 故 $B\in\mathscr L(X^*)$.
证明
题目
- ((1)) (10 分) 设 $\Omega \subset \mathbb{R}^n$ 是一个可测集, $K \in L^2(\Omega \times \Omega)$. 定义
证明:$T \in \mathfrak{C}(L^2(\Omega))$. - [(2)] (5 分) 若 $f = 0$ 时, 下列积分方程
只有零解 $u = 0$, 证明:$\forall f \in L^2(\Omega)$, 上述积分方程都存在唯一的解 $u \in L^2(\Omega)$, 且存在常数 $C > 0$, 使得
由 Cauchy-Schwarz 不等式及 $K(x,y)\in L^2(\Omega\time\Omega)$ 所以 $T\in \mathscr L(L^2(\Omega))$.
设 $K_n$ 是 $L^2(\Omega\times\Omega)$ 上的依范数收敛于 $K$ 的简单函数, 并且每个取值集合均为 $E_i\times F_i$ 的形式, $E_i,F_i\subset\Omega$ 令 $T_n:u(x)\mapsto\displaystyle\int_{\Omega} K_n(x,y)u(y)\text{d} y$.
由于 $T_n$ 的值域是有限维的, 故每个 $T_n$ 都是紧算子. 并且有 $\Vert T-T_n \Vert\leqslant \Vert K-K_n \Vert\to 0$
又 Hilbert 空间完备, 故紧算子在有界算子中闭, 从而 $T$ 是紧算子.
- ((2)) 设 $\widetilde{T}=-T$, 由 (1) 知 $\widetilde{T}$ 也是紧算子.
$f=0$ 时只有零解, 即 $\text{Ker}(I-\widetilde{T})=\lbrace 0\rbrace $, 而由 Riesz-Fredholm 理论 (iii) $\text{Ker}(I-T)=\lbrace 0\rbrace \Leftrightarrow\text{Ran}(I-T)=X$ 得到 $\text{Ran}(I-\widetilde{T})=L^2(\Omega)$.
即 $I-\widetilde{T}$ 是双射. 所以对任意 $f\in L^2(\Omega)$ 存在唯一解.
又 $L^2(\Omega)$ 完备, 故根据 Banach 逆映射定理 $(I-\widetilde{T})^{-1}\in\mathscr L(L^2(\Omega))$.
从而存在 $C>0$ 使得 $\Vert u \Vert\leqslant\norm{(I-\widetilde{T})^{-1}}\Vert f \Vert=C\Vert f \Vert$.证明
题目
(10 分) 设 $\mathscr X$ 是赋范线性空间而 $f_0,f_1,\cdots,f_n\in\mathscr X^*$, 其满足
试证: 存在常数 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 使得 $f_0=\alpha_1f_1+\alpha_2f_2+\cdots\alpha_nf_n$.
证明
题目
(20 分) 设 $s\in\mathbb{R}$ 并定义如下复值数列构成的集合
定义 $\Vert \lbrace x_n\rbrace \Vert_s=\left(\sum\limits_{n=1}^\infty n^s|x_n|^2\right)^{1/2}$.
- (5 分) 证明: $(X_s,\Vert \cdot \Vert_s)$ 是 $B$ 空间且可以定义内积形成 $Hilbert$ 空间.
- (15 分) 设 $s>t$ 证明: $(X_s,\Vert \cdot \Vert_s)$ 中的单位闭球是 $(X_t,\Vert \cdot \Vert_t)$ 中的紧集.
题目
设 $X$ 是自反空间, $E$ 是 $X$ 的闭凸子集. 那么 $\forall x\in X$, 都存在 $y\in E$ 使得 $\Vert x-y \Vert=\rho(x,E)$.
(2) $x\notin E$. 由下确界定义知存在 $\lbrace y_n\rbrace \subset E$ 使得 $\Vert x-y_n \Vert<\rho(x,E)+\frac 1n$. 则 $\lbrace y_n\rbrace $ 是自反空间中的有界列, 故存在弱收敛子列, 设 $y_{n_k}\xrightarrow{w}y\in X$. 由 $E$ 是闭凸子集, 根据 Mazur 定理, $E$ 是弱闭的, 从而 $y\in E$. 一方面 $\Vert x-y \Vert\geqslant \rho(x,E)$. 另一方面, 由 Hahn-Banach 定理, 存在 $f\in X^*$, 满足 $\Vert f \Vert=1$ 且 $f(x-y)=\Vert x-y \Vert$. 从而 $\Vert x-y \Vert=f(x-y)=f(x-y_{n_k})+f(y_{n_k}-y)\leqslant\norm{x-y_{n_k}}+f(y_{n_k}-y)\leqslant \rho(x,E)+\frac 1n+f(y_{n_k})-f(y)\to \rho(x,E)$. 从而 $\Vert x-y \Vert=\rho(x,E)$.
证明
题目
设 $A$ 是复 Hilbert 空间 $H$ 上的有界自伴算子, 则 $\sigma(A)\subset\mathbb R$ (免证).
- ((1)) (10 分) 证明: $\Vert A \Vert=\sup\limits_{\Vert x \Vert=1}|(Ax,x)|$.
- (2) 令 $m(A)\triangleq \inf\limits_{\Vert x \Vert=1}(Ax,x), M(A)\triangleq\sup\limits_{\Vert x \Vert=1}(Ax,x)$ 证明: $\sigma(A)\subset[m(A),M(A)]$ 且 $m(A),M(A)\in\sigma(A)$.
- [(3)] (5 分) 进一步假设 $A\in\mathfrak{C}(H)$. 证明: 若 $m(A)\neq 0$, 则 $m(A)\in\sigma_p(A)$; 若 $M(A)\neq 0$, 则 $M(A)\in\sigma_p(A)$.
证明